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We study critical random Boolean networks with two inputs per node that contain only canalyzing functions.
We present a phenomenological theory that explains how a frozen core of nodes that are frozen on all attractors
arises. This theory leads to an intuitive understanding of the system’s dynamics as it demonstrates the analogy
between standard random Boolean networks and networks with canalyzing functions only. It reproduces cor-
rectly the scaling of the number of nonfrozen nodes with system size. We then investigate numerically attractor
lengths and numbers, and explain the findings in terms of the properties of relevant components. In particular
we show that canalyzing networks can contain very long attractors, albeit they occur less often than in standard
networks.
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I. INTRODUCTION

Random Boolean networks are often used as generic mod-
els for the dynamics of complex systems of interacting enti-
ties, such as social and economic networks, neural networks,
and gene or protein interaction networks �1�. The simplest
and most widely studied of these models was introduced in
1969 by Kauffman �2� as a model for gene regulation. The
system consists of N nodes, each of which receives input
from K randomly chosen other nodes. The network is up-
dated synchronously, the state of a node at time step t being
a Boolean function of the states of the K input nodes at the
previous time step, t−1. The Boolean update functions are
randomly assigned to every node in the network, and to-
gether with the connectivity pattern they define the realiza-
tion of the network. For any initial condition, the network
eventually settles on a periodic attractor. Of special interest
are critical networks, which lie at the boundary between a
frozen phase and a chaotic phase �3–5�. In the frozen phase,
a perturbation at one node propagates during one time step
on an average to less than one node, and the attractor lengths
remain finite in the limit N→�. In the chaotic phase, the
difference between two almost identical states increases ex-
ponentially fast, because a perturbation propagates on an av-
erage to more than one node during one time step �6�.

Critical networks with K=2 inputs per node have been
studied by a variety of authors. A K=2 network is critical if
frozen and reversible update functions are chosen with equal
probability. The remaining update functions are canalyzing,
i.e., one input can fix the output of a node, irrespective of the
value of the second input. Table I shows the 16 update func-
tions of K=2 networks.

Critical networks that contain a nonvanishing proportion
of frozen and reversible update functions are in the meantime
relatively well understood �7–13�. They contain three classes
of nodes, which behave differently on attractors. First, there
are nodes that are frozen on the same value on every attrac-
tor. Such nodes give a constant input to other nodes and are
otherwise irrelevant. They form the frozen core of the net-
work. Second, there are nodes without outputs and nodes
whose outputs go only to irrelevant nodes. Though they may
fluctuate, they are also classified as irrelevant since they act

only as slaves to the nodes determining the attractor period.
Third, the relevant nodes are the nodes whose state is not
constant and that control at least one relevant node. These
nodes determine completely the number and period of attrac-
tors. If only these nodes and the links between them are
considered, these nodes form loops with possibly additional
links and chains of relevant nodes within and between loops.
We call a set of relevant nodes that are connected in this way
a relevant component. The nonfrozen nodes that are not rel-
evant sit on trees rooted in the relevant components. In Ref.
�8�, it was found that the number of nonfrozen nodes scales
in the limit N→� as N2/3 and the number of relevant nodes
as N1/3. This result was confirmed by an analytical calcula-
tion in Ref. �13�, where it was additionally shown that the
number of nonfrozen nodes with two nonfrozen inputs scales
as N1/3, and that the number of relevant nodes with two rel-
evant inputs remains finite in the limit N→�. The mean
number of relevant components was found to be proportional
to ln N, and all but the largest relevant components are
simple loops.

Canalyzing networks share many features of other critical
networks. Thus, the calculation by Samuelsson and Troein
�9� of the number of attractors can be generalized to cana-
lyzing networks �12�, implying that canalyzing networks also
have of the order of N2/3 nonfrozen nodes and at most N1/3

nonfrozen nodes with two relevant inputs, and that the mean
attractor number increases faster than any power law with
the network size. Whether the nonfrozen nodes are the same
on all attractors in canalyzing networks �as is the case of
networks containing frozen update functions�, cannot be de-
cided from previous work. The detailed results of Ref. �13�
can only be derived if there are nodes with frozen functions.
For these reasons, a separate study of canalyzing networks is
needed. It is the main aim of this paper to show how the
attractors and the frozen nodes arise in canalyzing networks.
We will see that canalyzing networks also have a frozen
core, which means that most frozen nodes are the same on all
attractors. It follows then that all results of Ref. �13� about
the relevant part of the network can be applied also to cana-
lyzing networks. We will also put an end to the longstanding
belief that canalyzing networks have fewer and shorter at-
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tractors. These features were argued to make canalyzing net-
works biologically more relevant �1�.

Let us therefore focus on K=2 networks that contain only
C2 functions. These functions take one value �0 or 1� three
times and the other one once. This means that each of the
two inputs can fix the output of the function irrespective of
the other input. For instance, the output of the first C2 func-
tion shown in Table I must be 0 if the first input is 1, irre-
spective of the second input. It must also be 0 if the second
input is 1, irrespective of the first input. Each of the eight C2
functions is chosen with equal probability in our simulations.
We will compare our results for C2 networks with those of
standard random Boolean networks �RBNs�, where all 16
update functions have the same weight. Part of our results
will also be compared to those of C1 networks, where the
update functions are chosen only from the C1 class. The C1
networks can be trivially mapped on critical K=1 networks
by removing the link to the input to which the node does not
respond. These networks have no frozen core. They have of
the order of �N relevant nodes, arranged in �ln N simple
loops �see �14��, with the largest loop length being of the
order �N. The other nodes sit on trees rooted in these loops.

In the next section, we study numerically the frozen nodes
in order to find out if the same nodes are frozen on all at-
tractors of C2 networks. In Sec. III, we explain the results of
the numerical simulations using phenomenological argu-
ments and analytical calculations. In Sec. IV, we study the
number and length of attractors of C2 networks and compare

the results to those of other network types. Finally we sum-
marize and discuss our results in the last section.

II. THE FROZEN CORE

From a generalization of the work of Samuelsson and
Troein �9� to all critical K=2 random Boolean networks �12�,
we know that for canalyzing networks the number of nonfro-
zen nodes scales for large network size in the same way as
for RBNs, i.e., with N2/3. In RBNs, the nodes frozen on all
attractors �i.e., the nodes belonging to the frozen core� can be
identified by starting with the nodes with frozen update func-
tions and by iteratively determining nodes that become fro-
zen because of frozen inputs �13�. In canalyzing networks
there are no frozen functions to start with, and this method
cannot be applied. It therefore arises the question whether
canalyzing networks have a frozen core at all, or whether
different attractors have different nonfrozen nodes. In the
following, we will answer this question using computer
simulations.

In Fig. 1 we show the average number Nf
�a� of frozen

nodes per attractor, both for canalyzing networks and for
RBNs. We actually plot the difference �N−Nf

�a�� as a function
of N in order to better see the asymptotic behavior. The other
two curves show the difference �N−Nf

�n��, where Nf
�n� is the

number of nodes frozen on all attractors found in the simu-
lation of a network. The technical details can be found in the
caption to the figure.

TABLE I. The 16 update functions for nodes with two inputs. The first column lists the four possible
states of the two inputs, the other columns represent one update function each, falling into the classes frozen
�F�, canalyzing �C1 and C2�, and reversible �R�.

In F C1 C2 R

00 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0

01 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1

10 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1

11 1 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

FIG. 1. Mean number of nonfrozen nodes for
canalyzing C2 networks �stars� and RBNs
�circles�. Solid lines connect the data points for
N−Nf

�a� �mean number of nonfrozen nodes per
attractor�, dashed lines the data points for N
−Nf

�n� �mean number of nodes that are nonfrozen
at least on one found attractor�. The dotted line is
a power law N2/3. Different attractors are counted
only once, without considering their basins of at-
traction. We have considered 1000 initial states
per network, averaged over 2000 networks.
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One can clearly see the similarity of the results for the
mean number of nonfrozen nodes per attractor �N−Nf

�a�� for
canalyzing networks and for RBN, in agreement with Refs.
�9,12�. The expected power law N2/3 is not yet reached for
the system sizes used in the simulation and is only ap-
proached slowly with increasing N. The number of nonfro-
zen nodes in the simulations was only of the order of 100 for
the largest simulated networks, which is yet too small to see
the asymptotic behavior. �And the number of relevant nodes,
which increases as N1/3, is only of the order 10 for the largest
simulated networks.�

Our results for �N−Nf
�n�� suggest that canalyzing networks

have a frozen core and of the order of N2/3 nonfrozen nodes,
because the curves for �N−Nf

�n�� differ only by a constant
factor from those for �N−Nf

�a�� for both network types. Fur-
thermore, there are of the order of N2/3 nodes that are frozen
only on part of the attractors. The factor between the two
curves is larger for canalyzing networks than for RBN.

In the following, we will explain the reason for the con-
stant factor between the curves for �N−Nf

�a�� and �N−Nf
�n��.

Since this point has not yet been discussed for RBNs, we
will consider both RBNs and canalyzing networks. The ex-
planation of the origin of the frozen core in canalyzing net-
works will be postponed until the next section.

The difference between the curves for �N−Nf
�a�� and �N

−Nf
�n�� is due to those nodes that are frozen on some attrac-

tors, but not on all attractors. These nodes do not belong to
the frozen core, and they are therefore relevant nodes or sit
on nonfrozen trees that are rooted in relevant components. In
Sec. I, we mentioned that most relevant components consist
of simple loops, and that only a few large components are
more complex and contain relevant nodes that have two rel-
evant inputs. Clearly, since the dynamics of the nonfrozen
nodes in the trees is determined by the dynamics of the rel-
evant nodes, all nodes of a relevant component and the non-
frozen trees rooted in it undergo a cycle of the same period
�when the attractor has been reached�, which is determined
by the initial state of the relevant nodes of that component. If
this cycle has period 1, all nodes of this component are fro-
zen on this attractor. We therefore have to show that a finite
fraction of all nonfrozen nodes are on cycles of length 1 on a
finite fraction of all attractors. This would lead to a constant
factor between the curves for �N−Nf

�a�� and �N−Nf
�n��.

Let us first consider relevant components that are simple
loops, and their nonfrozen trees. The mean number of rel-
evant loops of length l is 1 / l for all l up to a cutoff lc
�N1/3, and the mean size of a tree rooted in a relevant node
is N1/3 �13�. The largest of these components consists there-
fore of the order of N2/3 nodes �including the nonfrozen
trees�, and if such a component reaches a fixed point attractor
with nonzero probability, we have explained the factor be-
tween the two curves. A relevant loop of length l has either
two fixed points �if the loop is “even,” i.e., if the state of a
node is repeated after l time steps� or none �if the loop is
“odd,” i.e. the state of a node is inverted after l time steps�.
Each case occurs with probability 1 /2. The number of attrac-
tors of a component with a loop of length l, however, in-
creases exponentially with l, and for this reason only a van-
ishing proportion of attractors of components of a size of the

order lc are fixed points in the limit of large N.
Next, we consider complex relevant components. In con-

trast to simple loops, where each initial state is part of a
periodic cycle in state space, more complex components can
have fixed points that are true attractors, i.e., that are reached
from a nonvanishing proportion of initial states �but not from
all initial states�. One example of such a component in RBNs
was discussed in Ref. �15�. It is a loop with an additional
chain of nodes within the loop, such that there is one node
that has two relevant inputs. From Ref. �13�, we know that
this component occurs with nonvanishing probability in a
RBN. In the case that the update function of the node with
two inputs is 0 only if both inputs are 0 and that the two
numbers of nodes on the two subloops have a common divi-
sor greater than 1, all apart from a finite number of initial
conditions end up on the same fixed point. The existence of
such components does not only explain the multiplicative
factor between the curves for �N−Nf

�n�� and �N−Nf
�a��, but it

explains also why this factor is larger for C2 networks than
for RBNs. The probability that an update function as in the
above example is chosen at the relevant node with two inputs
is larger for canalyzing networks.

We conclude this section by comparing C2 networks with
C1 networks, which are canalyzing networks, but with update
functions of the C1 class. Our simulation results for Nf

�a� and
Nf

�n� are shown in Fig. 2. Both curves increase for C1 net-
works as �N. Asymptotically, Nf

�n� is of the order �N /2, since
only even loops of length 1 can be frozen on all attractors,
while the average tree size is of the order of �N. To calculate
Nf

�a� we note that only even loops of length l have �two� fixed
points, and that they do not reach these fixed points for 2l

−2 initial conditions. The contribution to the average number
of frozen nodes per attractor from simple loops of length l is
then 1/ l ·1 /2 ·2l /2l ·�N, where we again take the probability
of an even loop 1/2 and the average size of a tree of the
order of �N into account. Summing over l leads to Nf

�a�

→�N. We conclude that, differently from C2 networks, the
ratio �N−Nf

�n�� / �N−Nf
�a�� approaches 1 asymptotically. As we

have learned, the reason for a larger factor between the two
curves for RBNs and C2 networks is the existence of com-
plex relevant components. In C1 networks all relevant com-
ponents are simple loops.

III. SELF-FREEZING LOOPS

In this section, we want to explain how the frozen core
arises in C2 networks and find some of its properties. We also
estimate its size by means of analytical arguments. The re-
sults are in agreement with Refs. �9,12�, confirming our in-
tuitive understanding of the origin of the frozen core.

Since a C2 network has no nodes with a frozen function,
the frozen core cannot be formed starting from single frozen
nodes. Instead, there must exist groups of nodes that fix each
other’s value and do not respond to changes in nodes outside
this group. Let us consider the simplest example of such a
group, namely a loop where each node canalyzes �fixes� the
state of its successor once it settles on its majority bit �the
one occurring three times in its update function table�. We
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call such loops self-freezing loops. In the following, we first
discuss these self-freezing loops, before discussing how a
frozen core that contains almost all nodes can be formed
starting from these loops.

If all nodes of a self-freezing loop are on their majority
bits, it stays frozen forever. Starting from an arbitrary initial
state, the number of nodes of a self-freezing loop on majority
bits cannot decrease with time, since each such node drives
its successor to its majority bit. It remains constant only in
the unlikely case that all inputs from outside the loop to the
nodes of the loop are fixed on the noncanalyzing value. We
can therefore assume that self-freezing loops are usually fro-
zen on all attractors, at least if the loops are large. As we will
see, most nodes that are part of self-freezing loops sit in
loops with a size of the order of N1/3.

The number of nodes on self-freezing loops can be esti-
mated as follows. The probability that a given node consti-
tutes a self-freezing loop of length 1 is 1 /N for a network
with N nodes. It is the product of the probability 2 /N that the
node is self-connected and the probability 1 /2 that the node
is canalyzed by its own majority bit. There is thus on average
one self-freezing loop of length 1 per network. With the
same line of reasoning, the average number of self-freezing
loops of length 2 per network is obtained to be � N

2
�

��2/N�2� 1
2

�2� 1
2 . For the self-freezing loops of length l�2

one has to take into account an additional factor, correspond-
ing to the number of ways to construct a directed loop out of
l nodes. The number of self-freezing loops of length l per
network is found to be 1/ l. The overall number of nodes on
self-freezing loops f0 is then

f0 = �l=1
lc

1

l
l = lc, �1�

lc being the cutoff in loop length. This simple probabilistic
consideration applies if lc is much smaller than N.

We can obtain a confirmation of this estimation and a
result for the value of lc by mapping the problem of finding
a self-freezing loop in a C2 network onto the problem of
finding the relevant nodes sitting on relevant loops in a criti-

cal network that contains no canalyzing functions at all, but
only R and F functions. Whether a randomly chosen node in
such a network is part of a relevant loop is determined by the
following algorithm. Consider the two inputs of this node.
With probability 1 /4, both inputs have a frozen update func-
tion, and the node is not relevant. With probability 1 /2, one
input has a frozen update function and the other one a re-
versible one. In this case we draw a link to this reversible
input node and thus mark it for investigation of its two inputs
in the next step. With probability 1 /4, both inputs have re-
versible update functions, and we draw links to both of them.
We iterate this procedure, choosing at each step the two in-
puts of a node at random from all nodes, and drawing links
to those inputs that do not have frozen update function. The
procedure continues until we either find a connection back to
the original node �in which case it is relevant�, or until no
more links can be drawn �in which case the original node is
not part of a relevant loop�. From the results of our article
�13�, we know that there is a mean number of 1 / l relevant
loops of size l in such a network, and that the cutoff in the
size of relevant components scales as N1/3.

Now, we turn to the procedure of finding self-freezing
loops in C2 networks and show that it is identical to the
procedure just described. We start with a randomly chosen
node and determine whether it is part of a self-freezing loop.
Consider the two inputs of this node. With probability 1 /4,
the majority bit of neither input canalyzes the chosen node,
and the node is not on a self-freezing loop. With probability
1 /2, the majority bit of one input does not canalyze the cho-
sen node, and the majority bit of the other input canalyzes it.
Let us draw a link to this input node and consider its two
inputs in the next step. With probability 1 /4, the majority
bits of both inputs canalyze the chosen node, and we draw
links to both of them. We iterate this procedure, choosing at
each step the two inputs of a node at random from all nodes,
and drawing links to those inputs, whose majority bits cana-
lyze the node. The procedure continues until we either find a
connection back to the original node �in which case it is part
of a self-freezing loop�, or until no more links can be drawn
�in which case the original node is not part of a self-freezing

FIG. 2. Number of frozen nodes for K=1 net-
works. Large squares: Nf

�n�; small squares: Nf
�a�.

For comparison, the corresponding curves for
RBNs and C2 networks are also shown, the data
are taken from Fig. 1. The dotted lines corre-
spond to the power laws N, �N, and �N /2.
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loop�. The analogy of the two procedures is obvious, and we
conclude lc�N1/3 and f0�N1/3.

Obviously, nodes depending on or canalyzed by the fro-
zen nodes of the self-freezing loops freeze also, and such
nodes may lead to the freezing of further nodes, etc. We
introduce a dynamical process in order to determine the total
number of nodes that become frozen because of the self-
freezing loops. This process is very similar in spirit to the
first stochastic process explained in detail in Ref. �13�. We
denote with f the number of nodes that have already become
frozen during the process, and the influence of which on
other nodes has yet to be determined. n1 is the number of
nodes for which we already know that one of their inputs is
frozen but does not canalyze them, and n2 is the number of
nodes for which no frozen input was yet identified. Initially,
n1=0, f = f0, n2=N− f0 and n� f +n1+n2=N. We answer for
one of the frozen nodes at a time the question whose input it
is. It is an input to any of the n2 nodes with probability 2 /n.
With equal probability 1 /2, the node either becomes frozen
by this input, or it becomes a nonfrozen node with effec-
tively one input �called a C1 node in the following�. If a node
with one input chooses the given frozen node as input �that
happens with probability 1 /n�, it becomes frozen. At each
step, the connected frozen node is being excluded from fur-
ther consideration. The change in the number of frozen nodes
and the change of n1 and n2 during one step is denoted by
�f , �n1 and �n2, respectively, and it is given by

�f = − 1 + �1 + �2,

�n1 = �n2 − n1�/n ,

�n2 = − 2n2/n . �2�

�1 and �2 are Poisson distributed variables with the mean
values n1 /n and n2 /n, respectively, and their probability dis-
tribution describes the probability distribution of the number
of nodes of the two types becoming frozen during one step.
In the second and third equations, we have replaced them
with their mean values, since fluctuations are small com-
pared to the values of n1 and n2. The fluctuations become
important only in the first equation, since f becomes small,
as we iterate the equations. The sum n= f +n1+n2 decreases
by 1 in each step. The dynamical process stops when all the
nodes are frozen �which is improbable� or when there are no
more frozen nodes the influence of which on other nodes has
not yet been determined.

Simulations of this process show that the total number of
nodes that are frozen because of the self-freezing loops is
around �N0.8, and that the number of nodes that are not fixed
by the self-freezing loops is of the order of N. The number of
nodes frozen because of the self-freezing loops is not large
enough to explain the simulation data of the previous sec-
tion. We therefore have to find a mechanism that generates
more frozen nodes. It is found by extending the definition of
self-freezing loops. We have just seen that nodes with one
nonfrozen input appear as we identify frozen nodes. Among
the nodes that are not frozen by the original self-freezing
loops, there are other types of self-freezing loops that contain
chains of nodes with one nonfrozen input between C2 nodes.

If a chain between two C2 nodes as a whole inverts its input,
the inverted majority bit of the first C2 node has to canalyze
the second C2 node. As with original self-freezing loops we
can claim that the generalized self-freezing loops are usually
frozen on attractors. At the end of the process described by
�2�, the generalized self-freezing loops need to be found. The
only effect of nodes with C1 functions in such loops is to
delay the signal propagation between two adjacent C2 nodes.
The remaining n2 nodes with C2 functions can therefore be
considered as an effective C2 network, which leads to n2

1/3

nodes on generalized self-freezing loops with similar loop
size statistics as discussed above. Among the n=n1+n2 non-
frozen nodes left after the iteration of Eqs. �2�, there will be
�n2

1/3 frozen nodes on generalized self-freezing loops, and
we denote this number with f0 to make the analogy to the
starting condition of process �2� clear. The decrease of the
values of n1, n2, and n1+n2 due to taking out the nodes on
the generalized self-freezing loops is a vanishing proportion
of n1 and n2 �in the limit N→�� and can be neglected. We
can now determine a different set of nodes that become fro-
zen due to the influence of the f0 nodes. This process can be
described again by equations �2�, with a new initial f0 and
with initial values of n1 and n2 obtained at the end of the first
search.

From now on we are only interested in the change of n1
and n2. It follows that the two equations

�n1 = �n2 − n1�/n ,

�n2 = − 2n2/n , �3�

apply to both search processes together. The equation for n is
�n=−1, as before. The solution of these equations is ob-
tained by going to differential equations for dn1 /dn and
dn2 /dn, which have the solution

n2 =
n2

N
, �4�

n1 = n −
n2

N
. �5�

The independence of the second search for frozen nodes
from the first one is due to the large enough number n1 at the
end of the first process �2�. This n1 ensures that typical self-
freezing loops in the remaining effective C2 network have
insertions of C1 chains.

In the same way, at the end of the second search process
we have again an effective C2 network, with chains contain-
ing newly generated C1 nodes. The number of remaining C1
nodes increases in the second process, the number of C2
nodes decreases, thus leading to an increasing weight of C1
nodes in the nonfrozen network. Equations �3� can now be
applied to a third process, which is similar to the first two.

The repeated process of identifying generalized self-
freezing loops and the nodes frozen by them breaks down
when the remaining nonfrozen nodes cannot be considered
as an effective C2 network any more. This happens when the
proportion n2 /n of C2 nodes becomes of the order �1/�n. To
explain this we note that for n2 /n�1/�n in the process of
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building a self-freezing loop C1 nodes are preferably attached
to the open end of the chain of the loop. Therefore there
occur C1 chains of an average length of the order ��n be-
tween C2 nodes. Now, the probability to attach a C2 input at
the end of the chain is of the same order of magnitude 1/�n
as the probability to attach some node of this chain at the end
of the chain, in which case the chain becomes a loop, and the
assembly of the self-freezing loop breaks down �becomes
improbable�.

Let us denote by Nnf the average number of nonfrozen
nodes in C2 networks and by N2 the average number of non-
frozen nodes with two inputs. N1=Nnf −N2 is then the aver-
age number of nodes with one nonfrozen input. The break-
down condition for the iterated process becomes then N2
��Nnf. Inserting the condition n2��n in the solution �4�,
we obtain

Nnf � N2/3,

N2 � N1/3. �6�

This is in agreement with the results of Refs. �9,12� and
confirms our intuitive understanding of the frozen core. The
frozen core consists of self-freezing loops, which arise in the
iterated process described in this section. The number of
nonfrozen nodes is of the order N2/3, with only N1/3 nonfro-
zen nodes having two nonfrozen inputs. The properties of the
nonfrozen part of the network are therefore the same as those
of RBNs, and we can take over the results obtained for the
nonfrozen part of RBNs. In particular, we can conclude that
the number of relevant nodes scales as N1/3, with only a finite
number of them having two nonfrozen inputs, and with most
relevant components being simple loops.

The considerations of this section can be repeated without
change also for mixed C1 and C2 critical Boolean networks,
consisting of nonfrozen nodes with one input and of nodes

with two inputs having update functions of class C2, provided
that the number of nodes with two inputs is larger than �N
�otherwise we are left with a C1 network�. Therefore, all the
results valid for C2 networks apply also to mixed C1 and C2
networks.

IV. NUMBER AND LENGTH OF ATTRACTORS

We also performed simulations to obtain statistical prop-
erties of the attractors of C2 networks in comparison to RBNs
and C1 networks. With the intuitive understanding developed
in the previous section we can interpret the results and gain
some insight.

We start with probability density for the attractor lengths.
The results are presented in Fig. 3. First, the decrease of the
curves is due to finite size effects. In the limit N→�, we
expect the probabilities to grow for increasing �but not too
large compared to N� L according to �7�, see below. In order
to explain the lower right figure we remind ourselves that the
number of relevant nodes Nrel scales in C2 networks and
RBNs with N1/3, whereas for C1 networks it scales with �N.
In all cases relevant components of sizes less than �Nrel are
mainly simple loops. The mean number of relevant loops of
length l is 1 / l as long as l is sufficiently far below Nrel. In the
last graph of Fig. 3 �lower right corner� the curves for N
=512 for RBNs and C2 networks agree well with the curve
for C1 networks for N=64 for smaller L. The reason is that
the number of relevant nodes is for all three types of net-
works of the same magnitude �since 5121/3=641/2�. The dif-
ference for large L is due to the fact that in C1 networks all
relevant nodes are on simple loops, so that all relevant com-
ponents have a cycle period of the order of their size, while
the more complex components occurring in the other net-
work types can have much longer cycle lengths. For large L,
the small difference between C2 networks and RBNs is due

FIG. 3. Probability density dis-
tribution for the attractor lengths
at different fixed network sizes N.
The four figures correspond re-
spectively to C1 networks, RBNs,
canalyzing C2 networks, and the
comparison of the three classes of
networks. In the lower right figure
C1 networks with 64 nodes have
on average the same number of
relevant nodes as C2 networks
with 512 nodes. In calculating the
relative frequencies of attractor
lengths, the frequencies were
weighted with the sizes of attrac-
tors’ basins of attraction. We con-
sidered 1000 initial states for one
network realization and averaged
over 2000 networks. The data are
binned on a logarithmic scale.
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to the presence of reversible functions in RBNs: relevant
components containing relevant nodes with two relevant in-
puts and a reversible update function can have extremely
long periods, which can become of the order of the state
space of the component �15�.

In our simulations, we find very long attractors also for C2
networks. This fact is fairly surprising if we remember that
C2 networks were originally thought to be interesting for
their short attractors, see, e.g., Ref. �2�.

We can explain the appearance of very long attractors in
canalyzing networks in the following way. Let us consider a
relevant component of a RBN that is a loop with an addi-

tional chain of nodes within the loop and a reversible update
function at the node with two inputs. As shown in Ref. �15�,
the attractors of such a component can comprise a finite pro-
portion of the state space even for very large components.
Now, it is possible to construct a relevant component that
contains three nodes with two relevant inputs, which all have
a canalyzing function, and that has, for the mapping implied
by Fig. 4, exactly the same attractor states as the relevant
component of the RBN. The number and lengths of attractors
are therefore identical in the two components. The reversible
function constructed from three canalyzing functions does
not, of course, appear as often in C2 networks as a reversible
function occurs in the RBN. Therefore the very long attrac-
tors appear relatively seldom in canalyzing networks.

In order to produce the curves in Fig. 3 we have binned
the data on a logarithmic scale, and we have chosen the
binning interval large enough to smoothen quite large fluc-
tuations. Otherwise, we could see even-odd fluctuations in
the number of attractors with neighboring lengths. There are
always more attractors with even lengths. Let us explain this
behavior. The small components of the relevant part of C2
networks are simple loops. But for simple loops even attrac-
tor lengths appear more often, since a loop with Nl nodes
leads to attractors of length Nl or 2Nl, depending on whether
it is even or odd. Therefore, an even attractor length 2Nl
occurs in loops with 2Nl or Nl nodes.

The cutoff in observed attractor length is of the order L
�AN2, with A=0.1 for RBN and 0.01 for C2 networks. This
is a finite size effect. Also, full ensemble averages are hard to
reproduce numerically. For example, with a substantial prob-
ability some network realizations appear with untypically
large attractors, which lead to an overestimation of the aver-
age attractor length for the considered value of N; compare
Fig. 5 below.

Figure 5 shows our results for the mean length of attrac-
tors. The most important observation is that the mean attrac-
tor length grows faster than any power law with N for all the
considered network classes, including C2 networks, whose
attractors are not substantially shorter than those of the other
networks. Only for small N can one roughly fit the curves
with the �N law suggested a long time ago.

FIG. 4. A RBN relevant component and a C2 relevant compo-
nent, whose attractors can be mapped pairwise onto each other.
Triangle arrows represent a chain of nodes, and without loss of
generality we can assume that the update functions of the nodes
with one input are all a “copy” function. The node marked with its
“copy” function is absent in the corresponding right arch of the
component on the right, and that arch is thus shorter by one node.
The left arch and the straight chain of the left component are iden-
tical to the two left arches and the two straight chains of the right
component. The table explains the notation for the update functions,
9 being the reversible one, which can be emulated by using the
canalyzing functions 1, 8, and 14. At the node with the update
function 14 the binary input combination 11 never occurs.

FIG. 5. Mean attractor length for canalyzing
C2 networks �stars�, RBNs �circles�, and C1 net-
works �squares� as a function of network size N.
The dotted line is a power law �N. For the cal-
culation of the mean attractor length, the attractor
lengths of different attractors �obtained with 1000
initial states for 2000 networks� were weighted
with the corresponding basins of attraction.
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All the curves are similar in shape. The reason for this is
again that the relevant part of all three network types consists
mainly of simple loops. The mean attractor length of RBNs
becomes larger than that of the other two network classes for
large N, due to the reversible functions occurring in complex
components.

We now discuss simulation results for attractor numbers.
In analytical calculations �9,12�, the average number CL�Nrel�
of attractors of length L was found to scale with a power of
the number of relevant nodes,

CL�Nrel� � Nrel
GL−1, �7�

with a proportionality factor that depends on L. GL is closely
related to the number of different possible cycles of length L
on simple loops. One can approximately write GL�2L /L; for
details, see Ref. �12�, at the end of Sec. II.

Figure 6 shows our simulation results for the number of
attractors of length L=7 and L=8 for C2 and C1 networks.
The data do not contradict the theoretically predicted scaling
with Nrel �7�, if one realizes the limitations of computer
simulations. We considered 1000 initial states and could
therefore explore the state space of a network having typi-
cally of the order of not more than 10 relevant nodes. This
explains why for Nrel�10 the number of found attractors
decreases with Nrel in contrast to the analytical result. On the
other hand, the analytical result is only valid for Nrel	L, so
that it is simply impossible to see the predicted power law
with computer simulations. A remarkable feature of Fig. 6 is
the qualitative difference between the curves for even and
odd L. We know from Ref. �12� that GL is smaller for odd L
than for neighboring even L.

Figure 7 shows the total number of attractors found start-
ing from 1000 initial states for each network. The curves for
the different types of networks are plotted in such a way that
the abscissae are of the order of the number of relevant nodes
for each type.

Just as for the previous figure, with �210 random initial
states the relevant nodes of a network with Nrel	10 assume
a large proportion of their possible values, and the average
number of attractors found is a good estimate of the real
ensemble average �if we average over a sufficiently large
number of network samples; compare the dashed and solid
line curves in Fig. 7�. For much larger networks, it is un-
likely that we get the same attractor twice using only 1000
initial states. Therefore the average number of found attrac-
tors trivially approaches 1000, yielding no information about
the network dynamics.

We compared our results with those of Ref. �8�, where
numerical simulations were performed to obtain median
number of attractors. This number is in our system less than
the mean number, and the corresponding curve �not shown�
lies below our data. For C1 networks, a lower bound for the
average number of attractors is 20.6�N, see Ref. �14�. Our data
suggest that the number of attractors can well be fitted by
2aNb

with two constants a and b. The lower bound as well as
the fit for C1 networks are plotted in Fig. 7 �dotted curves�.

Originally based on computer simulation of small sys-
tems, Kauffman had suggested that the mean number of at-
tractors increases as �N. For small N, our data are compat-
ible with such a relation. The more recent and analytical
results �see, e.g., Ref. �12��, lead to the exponentially large
number of attractors, also in agreement with our data.

The similarity in the form of the three curves in Fig. 7
confirms our understanding of the dynamics in terms of the
relevant nodes. In the limit N→� the fraction of the relevant
nodes with two inputs goes to zero for the C2 networks and
RBNs and the average number of attractors is mainly deter-
mined by of the order of ln N relevant loops. The average
number of attractors grows exponentially fast with the num-
ber of relevant nodes.

V. SUMMARY

In this paper, we have shown that canalyzing random
Boolean networks have a frozen core, the size of which is

FIG. 6. Absolute number of attractors of the
lengths L=7 �dashed and dotted lines� and L=8
�solid lines� for canalyzing C2 networks �stars�
and C1 networks �squares�. The curves for the dif-
ferent types of networks are plotted in such a way
that the abscissae are of the order of the number
of relevant nodes for each type. The data were
extracted from those used for Fig. 3. The dotted
line corresponds to the averaging over 1000 and
not 2000 network realizations.
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comparable to that of other random Boolean networks. It
follows that the attractors of canalyzing networks are deter-
mined by of the order of N1/3 relevant nodes, which are con-
nected to of the order of ln N relevant components, most of
which are simple loops.

We have explained how the frozen core arises starting
from self-freezing loops. Furthermore, we have investigated
the numbers and lengths of attractors. From the properties of
the relevant components it follows that their average num-
bers increase faster than any power law with system size.
Although attractors of canalyzing networks are on average
shorter than those of RBNs, extremely long attractors can
also arise in canalyzing networks. We have shown this by
constructing a relevant component that has the same attrac-
tors as a relevant component of a RBN. All the results valid

for C2 networks apply also to mixed C1 and C2 networks.
We have also seen that incomplete sampling leads to large

fluctuations and uncertainties in the data. Additionally, very
short and very long attractors are difficult to find. The first
ones constitute an exponentially small fraction of the state
space, the others appear exponentially seldom in a network
realization. Therefore, computer simulations needed to be
supplemented by analytical arguments. At the same time, it is
extremely difficult to verify numerically some known ana-
lytical results.

We conclude that the original hypothesis that critical
canalyzing networks have short attractors cannot be upheld.
Rather, biological systems need to be modeled by more spe-
cific networks that are not randomly connected.
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FIG. 7. Average number of attractors obtained
with 1000 initial states and 1000 networks
�dashed lines� and 2000 networks �solid lines� for
canalyzing C2 networks �stars�, RBNs �circles�,
and C1 networks �squares�. The curves for the dif-
ferent types of networks are plotted in such a way
that the abscissae are of the order of the number
of relevant nodes for each type. The dotted lines

correspond to the curves 20.6N1
0.5

and 20.55N1
0.7

,
where N1 is the number of nodes in C1 networks,
i.e., the squared value of the abscissa here.
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